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The use of angular information in the form of line-of-sight (LOS)

measurements from passive sensors for the purposes of target local-

ization and tracking has been extensively studied. Previous work has

shown that the formation of fused composite measurements from a

minimum number of LOS measurements (two) is statistically effi-

cient, and therefore, the Cramér-Rao Lower Bound (CRLB) pro-

vides a valid measurement noise covariance for the resulting com-

posite measurement. If the LOS measurements are not synchro-

nized, however, the formation of composite measurements is not

possible from two LOS observations. In this paper, two methods

are presented for forming composite measurements when LOS ob-

servations are obtained asynchronously. It is demonstrated that the

minimum number of LOS measurements required from two asyn-

chronous sensors is four, and that both methods provide a statisti-

cally efficient estimate for track initialization.
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1. INTRODUCTION

Target localization and tracking algorithms often

make use of passive sensors, these being for stealthy

surveillance of a region. The main disadvantage of us-

ing such sensors is that they generally provide only

line-of-sight (LOS) measurements, and without provid-

ing range measurements, a single passive sensor cannot

fully localize a target. The angular measurements could

be directly used in nonlinear tracking filters, or com-

posite measurements can be obtained by fusing multi-

ple angular measurements, with the resulting composite

measurements passed to the tracking filter.

The fused composite measurements can provide full

Cartesian position (and possibly velocity) estimates to

take advantage of the ensuing linear measurement equa-

tion. If the state equation is linear, then one can use

linear filters. The use of S-D assignment algorithms for

association of angular measurements from passive sen-

sors can be found in [4], [8]. In the present paper we

will assume that the angular measurements have been

correctly associated and will focus on the formation of

composite measurements and their use in track initial-

ization. The composite measurements could continue to

be used in a linear tracking filter, or the angular mea-

surements could be used directly in a nonlinear (EKF)

filter, such as in [9], where tracking boost phase missiles

with LOS measurements was examined.

Prior work on target localization through angular

measurements includes [3], [5], [6], [10]—[12]. Applica-

tion of Taylor-series estimation to the problem of target

localization is presented in [5] and extended in [11]. In

both papers, though the statistics of the estimation er-

rors are examined, neither the CRLB nor the statistical

efficiency of the procedure is investigated.

In [10], equations are derived for the covariance-

based uncertainty ellipsoids, circular error probability

regions, and geometric dilution of precision, along with

their relation to the particular localization scheme and

received signal characteristics. However, the CRLB and

the statistical efficiency of the estimation scheme are not

considered.

LOS measurements to “beacons” with known loca-

tion have been used to determine the position and at-

titude of a sensor (camera) in [3]. In this formulation,

the LOS angle measurements to the beacons are taken

by the sensor at an unknown location and the angles

are with respect to the unknown attitude of the sensor.

Thus, the estimation of the sensor location and attitude

has to be done simultaneously. Observability conditions

and the CRLB were derived for this problem.

An investigation of the CRLB of the initial state esti-

mate of a boost phase object using LOS measurements

from geosynchronous satellites is considered in [12].

That paper, however, focused only on the behavior of

the CRLB, and not on whether any estimation scheme

meets the CRLB.
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Fig. 1. Type III multisensor information processing configuration.

Fig. 2. Type IV multisensor information processing configuration.

The ML estimation for bearing-only target localiza-

tion (triangulation) was considered in [6]. In that paper,

examples in two dimensions with bearing-only mea-

surements show that the ML estimator is unbiased and

efficient only when a significant number of measure-

ments are utilized.

None of the previously mentioned papers provided

a comparison of linear and nonlinear tracking filters us-

ing angular and composite measurements. Furthermore,

these papers did not examine the particular difficulties

of utilizing asynchronous measurements.

In [7] the statistical efficiency of composite measure-

ments was examined for passive sensors which provide

LOS measurements. In that work, it was shown via sta-

tistical tests that the minimum number of measurements

(two) provide a composite measurement with a resulting

estimation error that was consistent with the Cramér-

Rao Lower Bound (CRLB) of the resulting parameter

estimation problem. Demonstration that the estimator

in question was statistically efficient (i.e., the estima-

tor met the CRLB) was of particular interest since the

CRLB can be easily calculated and can then be used as a

measurement noise covariance for linear tracking filters

which utilize the resulting composite measurement.

One particular limitation of the method outlined in

[7] is the need for the sensors to be perfectly synchro-

nized. The present work expands the method of [7]

for use with asynchronous passive sensors and again

demonstrates the statistical efficiency of the approach.

Additionally, an alternative track initialization scheme

using interpolated LOS measurements is examined, and

it is demonstrated that both methods are statistically ef-

ficient and the performance difference between them is

statistically insignificant.

Section 2 provides an overview of the relevant data

fusion configurations (Type III and Type IV–see [2]).

Section 3 formulates the problem by illustrating the

requirements for observability and outlining the method

of forming composite measurements. Section 4 provides

simulation results and Section 5 summarizes the paper

and presents conclusions.

2. MULTISENSOR TRACKING CONFIGURATIONS

As defined in [2], there are four general configura-

tions of information processing for multisensor track-

ing. The Type I configuration refers to single sensor

tracking and provides a baseline for comparison of mul-

tisensor tracking configurations. The Type II configura-

tion refers to single sensor tracking followed by track-

to-track association and fusion. There exist a number

of subsets of this configuration depending on possible

levels of feedback and memory. Of particular interest

to this paper, however, are the Type III and Type IV

configurations.

2.1. Type III Multisensor Configuration

The Type III multisensor configuration is illustrated

in Figure 1. In this configuration, each (passive) sensor

performs individual signal processing to generate (LOS)

measurements. The measurements are then passed on to

a fusion center where the measurements are associated

and combined into full three-dimensional (3D) position

measurements, referred to as supermeasurements or com-

posite measurements. The composite measurements can

then undergo “dynamic association,” i.e., the association

of measurements to existing tracks (or, alternatively, to

form new tracks). The use of composite measurements

allows the tracking filter to behave as a single sensor

tracker would.

2.2. Type IV Multisensor Configuration

The Type IV multisensor configuration is the fully

centralized multisensor tracking configuration and illus-

trated in Figure 2. In this configuration, each sensor

performs individual signal processing to generate mea-

surements, and each measurement is passed to a fusion

center which will then perform the association of mea-
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surements to tracks followed by track update (as well

as formation/termination of new/old tracks).

3. PROBLEM FORMULATION

Assume we have Ns sensors with known position

si = [xi,yi,zi]
0, i= 1,2, :::,Ns, in Cartesian coordinates.

Each sensor provides line-of-sight (LOS) measure-

ments, where the LOS measurement at time tn (not nec-

essarily the same across sensors) is to a target at the un-

known position xp(tn) = [x(tn),y(tn),z(tn)]
0, in the same

Cartesian coordinates. The measurement from sensor i

and at time tn is

zi(tn) = h(xp(tn),si) +wi(tn) (1)

where wi(tn) is zero-mean white Gaussian measurement

noise with covariance matrix Ri and

h(xp(tn),si) =

·
®i(tn)

²i(tn)

¸

=

26664
tan¡1

μ
y(tn)¡ yi
x(tn)¡ xi

¶
tan¡1

Ã
z(tn)¡ zip

(x(tn)¡ xi)2 + (y(tn)¡ yi)2

!
37775
(2)

Furthermore, it will be assumed that, in the asyn-

chronous case, the measurements are provided to the

fusion center with a time stamp at which the measure-

ment was taken. This time stamp will be assumed to be

known perfectly.

For a more detailed overview of the LOS measure-

ment fusion in the synchronous case, see [7]. The proce-

dure for the synchronous case is to utilize Iterated Least

Squares (closely related to the Gauss-Newton method)

with two LOS measurements to obtain a maximum like-

lihood (ML) estimate of the full 3D position of the tar-

get. We assume that there is no data association uncer-

tainty between the two measurements (i.e., it is known

perfectly that they belong to the same target).

For the asynchronous case, modifications are needed

to account for each measurement being taken at a dif-

ferent time. Assuming that the measurements are taken

a short time interval apart (so that the target does not

have time to maneuver), the target will be well-modeled

by a constant velocity motion model. In order to fit a

constant velocity motion model to the target, a six di-

mensional state vector must be estimated, consisting of

the target’s position and velocity at a particular point

in time. There exists, however, a subtle unobservability

for this problem that will necessitate the use of more

measurements than at first seems necessary.

3.1. Incomplete Observability of the Target State with
Three LOS Measurements

Since each LOS measurement (1) is a two dimen-

sional vector, three such measurements should be the

minimum required to solve for a constant velocity tar-

get’s state, i.e., we have six equations (observations

from (2)) and six unknowns (target position and velocity

in 3D space). The estimation of the constant velocity

target’s state at a particular point in time, however, is

basically equivalent to finding three positions along the

LOS vectors (one position along each vector), such that

the three positions are appropriately spaced to match

the constant velocity model and the three time stamps.

Given three sensors with one LOS from each, the tar-

get parameter vector is fully observable (provided the

sensors are not positioned on a straight line). If multi-

ple LOS measurements are provided by the same sen-

sor, however, there is a lack of full observability when

three LOSmeasurements are provided if the trajectory is

coplanar with the line connecting the two sensors. This

incomplete observability will be demonstrated by illus-

trating some of the multiple solutions obtained when

given two LOS measurements from one sensor and one

from a second sensor.

Figure 3 depicts three possible trajectories which are

found to fit the same three LOS observations provided

by two sensors. In addition to the true target which

was simulated to generate the observations, there are

two other ghost targets (only two are shown here; there

are many possible), traveling in different directions with

different constant speeds, that could have produced the

same observations. Since the target’s state is thus un-

observable with three LOS measurements, the minimum

number of observations which can form composite mea-

surements from two asynchronous sensors is four.

3.2. Formation of Composite Measurements from
Asynchronous LOS

Due to the issues with observability of the six dimen-

sional target state, a single composite measurement will

be formed from a batch of four asynchronous LOS mea-

surements. Similar to [7], the formation of the compos-

ite measurement will be done via Iterated Least Squares

(ILS) [1] using the ML criterion.

We will assume that the batch of measurements

provided to the fusion center is

z= [z1(t1)
0,z2(t2)

0,z3(t3)
0,z4(t4)

0]0 t1 < t2 < t3 < t4 (3)

where zi(tn) is given by (1).
1

The composite measurement will consist of the tar-

get’s state

x(tf) = [x(tf),y(tf),z(tf), _x(tf), _y(tf), _z(tf)]
0 (4)

1The notation of (3) would seem to suggest that four sensors are

used, however, any order of measurements from two to four sen-

sors would be valid. In fact, in later simulations, the measurements

will be assumed to come from two sensors at alternating times, i.e.,

[z1(t1),z2(t2),z1(t3),z2(t4)].
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Fig. 3. Three possible target trajectories that fit three identical LOS

observations. The speeds of these targets are 250 m/s (Truth),

146.6 m/s (Ghost 1), and 498.5 m/s (Ghost 2). The two LOS from A

and one LOS from B allow additional possible (ghost) trajectories.

at a particular “fusion time” tf . The ILS estimate (after

the jth iteration) of the target state (4) is

x̂
j+1
ILS = x̂

j
ILS + [(H

j)0R¡1Hj]¡1(Hj)0R¡1

¢ [z¡h(x̂jILS)] (5)

where

h(x̂
j
ILS)

¢
=

2666664
h(F(t1, tf)x̂

j
ILS,s1)

h(F(t2, tf)x̂
j
ILS,s2)

h(F(t3, tf)x̂
j
ILS,s3)

h(F(t4, tf)x̂
j
ILS,s4)

3777775 (6)

F(tn, tf)
¢
=

26666666664

1 0 0 tn¡ tf 0 0

0 1 0 0 tn¡ tf 0

0 0 1 0 0 tn¡ tf
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

37777777775
(7)

R =

26664
R1 0 0 0

0 R2 0 0

0 0 R3 0

0 0 0 R4

37775 (8)

and Hj is the Jacobian matrix of the measurements

(given below) evaluated at the jth ILS estimate.

By using the transition matrix (7), the target state (4)

is predicted to the time of each measurement in (3), and

(6) provides the predicted LOS observation for use in

forming the necessary residuals for the ILS iteration (5).

The Jacobian matrix is

H = [H 01 H 02 H 03 H 04]
0 (9)

where2

Hi =

2664
@®i
@x

@®i
@y

@®i
@z

@®i
@ _x

@®i
@ _y

@®i
@ _z

@²i
@x

@²i
@y

@²i
@z

@²i
@ _x

@²i
@ _y

@²i
@ _z

3775 (10)

The necessary partial derivatives with respect to the

position terms of (4) are

@®i
@x

=¡ ¢yi
(¢xi)

2 + (¢yi)
2

(11)

@®i
@y

=
¢xi

(¢xi)
2 + (¢yi)

2
(12)

@®i
@z

= 0 (13)

@²i
@x
=¡ (¢xi)(¢zi)p

(¢xi)
2 + (¢yi)

2kx¡ sik2
(14)

@²i
@y

=¡ (¢yi)(¢zi)p
(¢xi)

2 + (¢yi)
2kx¡ sik2

(15)

@²i
@z
=

p
(¢xi)

2 + (¢yi)
2

kx¡ sik2
(16)

where k ¢ k denotes the Euclidean norm,264¢xi¢yi

¢zi

375 ¢
=

2641 0 0 ¢tn 0 0

0 1 0 0 ¢tn 0

0 0 1 0 0 ¢tn

375x¡ si (17)

and
¢tn

¢
= tn¡ tf (18)

The partial derivatives with respect to the velocity terms

of (4) are

@®i
@ _x

=¢tn
@®i
@x

(19)

@®i
@ _y

=¢tn
@®i
@y

(20)

@®i
@ _z

=¢tn
@®i
@z

(21)

@²i
@ _x
=¢tn

@²i
@x

(22)

@²i
@ _y

=¢tn
@²i
@y

(23)

@²i
@ _z
=¢tn

@²i
@z

(24)

3.3. Initial Solution

In order to perform the numerical search via ILS, an

initial estimate x̂0ILS is required. Since four LOS mea-
surements are needed to form the composite measure-

ment, the initialization will be done by forming two

Cartesian measurements from pairs of LOS, as if they

2The time argument tf has been omitted for simplicity, but note that

the partial derivatives are taken with respect to the elements of (4).
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were taken synchronously. Since the initialization needs

only to be approximate, the error introduced by (incor-

rectly) assuming pairs of LOS measurements are taken

synchronously will be corrected by refinement in sub-

sequent updates.

In this case, each pair of LOS measurements will

form a Cartesian position as

264x
0

y0

z0

375=
26666664

y2¡ y1 + x1 tan®1¡ x2 tan®2
tan®1¡ tan®2

tan®1(y2 + tan®2(x1¡ x2))¡ y1 tan®2
tan®1¡ tan®2

z1 + tan²1

¯̄̄̄
(y1¡ y2)cos®2 + (x2¡ x1)sin®2

sin(®1¡®2)
¯̄̄̄

37777775
(25)

The two Cartesian positions formed from (25) can then

be differenced to provide an approximate initial veloc-

ity estimate. This procedure is analogous to two-point

differencing [1] and will provide a full six-dimensional

state estimate to initialize the ILS algorithm.

3.4. Formation of Composite Measurements from
Interpolated Asynchronous LOS

As an alternative to the above method of forming

full composite measurements by explicitly fitting to a

constant velocity model, one could form the compos-

ite measurement by utilizing interpolated asynchronous

LOS measurements and two-point differencing.

In the interpolation method, the successive LOS

measurements from one sensor are interpolated to the

time of a measurement from the second sensor, i.e., the

interpolated measurement is

ẑi(tn) = zi(tn¡1)+
tn¡ tn¡1
tn+1¡ tn¡1

[zi(tn+1)¡ zi(tn¡1)]] (26)

where tn in this case would be the time of the mea-

surement from the second sensor, and tn¡1 and tn+1
are the times of the two measurements from the first

sensor. This interpolated LOS and the second sensor’s

LOS measurement can then provide a composite po-

sition measurement using the method of [7]. This can

be repeated using a different set of LOS measurements

to obtain a composite position measurement at another

time. Two-point differencing is then performed on the

two composite position measurements, and the resulting

state estimate and covariance are predicted to the fusion

time tf .

In later sections, comparisons are made between this

interpolation method and the full asynchronous LOS

composite measurement method of Subsection 3.2. In

order to use the same number of asynchronous LOS

measurements (four) in both the interpolation method

and the composite measurement method, the first use

of (26) will involve [z1(t1),z2(t2),z1(t3)], and the second

will involve [z2(t2),z1(t3),z2(t4)]. The use of the mid-

dle two LOS measurements in both composite measure-

ments will result in correlated errors, but the two-point

differencing will be carried out assuming uncorrelated

errors.

3.5. Cramér-Rao Lower Bound

The Cramér-Rao Lower Bound (CRLB) provides a

lower bound on the estimation error obtainable from an

unbiased estimator, where

Ef(x¡ x̂)(x¡ x̂)0g ¸ J¡1 (27)

where J is the Fisher Information Matrix (FIM), x is the

true value to be estimated, and x̂ is the estimate.

The FIM is

J = Ef[rx ln¤(x)][rx ln¤(x)]0gjx=xtrue (28)

where ¤(x) is the likelihood function of the parameter

vector to be estimated, and the FIM is evaluated at the

true parameter vector.3

The gradient of the log-likelihood function is

rx¸(x) =
NsX
i=1

H 0i R
¡1
i (zi(ti)¡h(F(tf , ti)x,si)) (29)

which, when plugged into (28) gives

J =

NsX
i=1

H 0i (R
¡1
i )

0Hijx=xtrue (30)

=H 0(R¡1)0Hjx=xtrue (31)

The resulting CRLB, J¡1, evaluated at the final es-
timate x̂ILS, can be used as an (estimated) measure-

ment noise covariance matrix for the resulting compos-

ite measurement. This allows x̂ILS to be used as a linear

measurement, avoiding the need to use LOS measure-

ments directly in a nonlinear tracking filter.

4. SIMULATION RESULTS

In order to examine the fusion of asynchronous LOS

measurements in Type III multisensor tracking configu-

rations, a nearly constant velocity target was simulated.

The motion model used was a constant velocity (CV)

motion model [1].

The target’s initial state was

x(t0) = [¡4000 4000 500 100 0 0]0 (32)

Two sensors were assumed to be positioned at

s1 = [0 0 0]0 (33)

s2 = [2000 y2 0]0 (34)

3The strict definition of the FIM requires it to be evaluated at

the true parameter, however, evaluation at the estimate (referred to

as the observed Fisher information) generally yields a very good

approximation.
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Fig. 4. RMS position error (over 10,000 Monte Carlo runs) of

initial track state for various measurement noise standard deviations

and y2 = 8,000.

where two sensor-target geometries are tested by us-

ing y2 = 0 or y2 = 8000. When y2 = 0, the target tra-

jectory is coplanar with the line connecting the sensors,

demonstrating in a practical fashion that the fourth LOS

measurement provides observability for the problem de-

scribed in Subsection 3.1.

The two sensors are assumed to provide measure-

ments at a sampling interval of T = 1 s, however, Sen-

sor 2 provides measurements offset T=2 after Sensor 1;

meaning there is one LOS measurement provided every

T=2, as opposed to two LOS measurements provided

every T.

With synchronous measurements, the Type III con-

figuration could provide composite measurements of the

target position in Cartesian space once every second,

formed in the same manner as in [7]. With asynchronous

measurements, the Type III configuration will provide

composite measurements of the target position and ve-

locity at the time of the final LOS observation in the

batch; but only one composite measurement will be gen-

erated at intervals of 2T (since four LOS measurements

are needed).

Two methods of initializing target tracks using a

batch of four LOS measurements will be compared. The

formation of composite position and velocity estimates

described in Section 3.2 can be used, with the CRLB

covariance used as the initial track covariance. Alter-

natively, the method of Section 3.4–a combination of

interpolation of the LOS measurements and two-point

differencing [1]–will be used.

Figure 4 shows the RMS position error of the initial

track state for both initialization methods. The measure-

ment noise standard deviation is varied from 1 mrad to

20 mrad, y2 = 8000, and 10,000 Monte Carlo runs are

performed. The two methods perform nearly identically.

Figure 5 shows the RMS velocity error of the initial

track state for both initialization methods. Once again,

the velocity error is nearly identical for both methods.

Figure 6 shows the normalized estimation error

squared (NEES) for the two initialization methods. The

Fig. 5. RMS velocity error (over 10,000 Monte Carlo runs) of

initial track state for various measurement noise standard deviations

and y2 = 8,000.

Fig. 6. Normalized estimation error squared (NEES) over 10,000

Monte Carlo runs, with y2 = 8,000.

NEES provides a way of evaluating the consistency of

the estimation errors with the covariances provided by

each estimation method. The dashed line of the figure

shows the 95% probability region for the NEES, demon-

strating that the estimate errors are commensurate with

their corresponding calculated covariances. In the case

of the composite measurement, the covariance is pro-

vided by the CRLB. In the case of the interpolation

method, the covariance is given by the two-point dif-

ferencing procedure [1], where the measurement noise

covariance for each of the two composite position mea-

surements is given by the CRLB as outlined in [7].

Note that, since an interpolated measurement is used,

the measurement noise covariance of the interpolated

measurement is not equal to the single LOS measure-

ment noise covariance. Due to the interpolation (and the

fact that, in this case, the interpolation is performed at

the midpoint between two measurements), the measure-

ment noise covariance of the interpolated LOS measure-

ments is half that of an individual measurement. The

fact that the measurement noises in the interpolations

are correlated, however, will be neglected.
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Fig. 7. RMS position error (over 10,000 Monte Carlo runs) of

initial track state for various measurement noise standard deviations

and y2 = 0.

Fig. 8. RMS velocity error (over 10,000 Monte Carlo runs) of

initial track state for various measurement noise standard deviations

and y2 = 0.

The method which fuses all four LOS measurements

into a composite position and velocity estimate provides

a consistent covariance using the CRLB, demonstrating

that the estimator is statistically efficient with a batch

of four LOS measurements. The interpolation method,

however, also provides consistency, in spite of the fact

that the interpolation measurement noises are assumed

uncorrelated.

Figures 7—8 show the RMSE position and velocity

error when y2 = 0. In this case, there appears to be a

slight improvement in performance when using interpo-

lated measurements. In order to test this, the statistical

significance of the error difference was examined. The

squared error of each element of the state (position and

velocity in x, y, and z) was normalized by its respec-

tive error covariance and averaged over the Monte Carlo

runs. This provides a statistical test involving a chi-

square random variable (similar to the NEES), where a

non-zero mean in the difference of the errors (i.e., a sig-

nificant improvement in one method over the other) will

manifest as a value outside of the 1¡® probability re-
gion. For the average over 10,000 Monte Carlo runs and

Fig. 9. Normalized estimation error squared (NEES) over 10,000

Monte Carlo runs, with y2 = 0.

®= 0:05, this value is 1.02. The maximum normalized

squared difference of the errors over all measurement

noise values and dimensions was 0.021, well below the

threshold required to reject the hypothesis that there is

no statistically significant difference in accuracy.

Figure 9 shows the NEES for the case where y2 = 0.

For this more difficult geometry, where the target tra-

jectory is coplanar with the line connecting the sensors,

the statistical efficiency breaks down for the compos-

ite measurement method when the measurement noise

standard deviation increases. The interpolation method,

however, is more resistant to the difficulties imposed by

the marginally observable geometry. The correlations

introduced by the interpolation method work in our fa-

vor in the marginally observable case by reinforcing

a solution that is skewed towards the middle two mea-

surements. This in turn reinforces a more “straight line”

solution over the ML solution’s fit to the four noisy data

points.

Following track initialization, the track maintenance

phase can be carried out either in the Type III config-

uration (where batches of measurements are fused into

full composite measurements of position and velocity)

or the Type IV configuration where the track is updated

one measurement at a time (in a nonlinear tracking fil-

ter). For the examples considered here, the choice of

fusion configuration for the track maintenance phase

made no significant difference in tracking performance

over the course of the target’s trajectory. It should be

noted, however, that when the track maintenance phase

was examined, both types of track updates (Type III

and Type IV) were performed on identically initialized

tracks. This ensures that the effect of the style of track

update was examined independently of the track initial-

ization method.

In order to test the above track initialization methods

for accelerating targets (but retaining the assumption of

a CV target), the simulations were repeated for targets
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Fig. 10. RMS position error (over 10,000 Monte Carlo runs) of

initial track state for y2 = 8,000 and a target with 1 m/s
2 acceleration.

Fig. 11. RMS position error (over 10,000 Monte Carlo runs) of

initial track state for y2 = 8,000 and a target with 2 m/s
2 acceleration.

Fig. 12. RMS position error (over 10,000 Monte Carlo runs) of

initial track state for y2 = 8,000 and a target with 5 m/s
2 acceleration.

which had constant accelerations of 1 m/s2, 2 m/s2,

5 m/s2 and 10 m/s2.

Figures 10—13 show the RMSE position error for

the various accelerating targets. There is no significant

change in the RMSE position error over this range of

accelerations. The RMSE velocity errors (not included

Fig. 13. RMS position error (over 10,000 Monte Carlo runs) of

initial track state for y2 = 8,000 and a target with 10 m/s
2

acceleration.

here) show similar results.

Figures 14—17 show the NEES for the accelerating

targets. When the acceleration is large enough, the

errors from neglecting the acceleration component can

have a significant impact on the statistical consistency

for the smaller levels of measurement noise. When the

measurement noise is large enough (or if the target

was further away), the cross-range measurement error

would mask the errors that are a result of neglecting

the acceleration. In such cases (small levels of cross-

range errors), the target model used in the initialization

method would need to account for the acceleration.

Using a constant acceleration model, however, would

require more measurements in order to estimate the

acceleration of the target in addition to the position and

velocity.

5. CONCLUSIONS

The use of angular measurements for target local-

ization and tracking has been widely studied, includ-

ing the formation of fused composite measurements to

avoid the need for nonlinear filtering. Previous research

into the formation of composite Cartesian position mea-

surements from LOS measurements demonstrated that

the maximum likelihood (ML) estimate obtained via

the ILS algorithm was able to provide a statistically

efficient estimate using only two LOS measurements.

This allowed the CRLB to be used as the measurement

noise covariance for the purposes of target tracking with

the fused composite measurements. This procedure re-

quired the measurements to be synchronized, however,

which may be an unrealistic assumption for real sys-

tems.

This paper presented two methods of forming fused

composite measurements from four asynchronous LOS

measurements, and demonstrated that four LOS mea-

surements are the minimum required from two asyn-

chronous sensors to do so. In addition to forming a com-

posite position and velocity estimate directly from the

four asynchronous LOS measurements, an alternative
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Fig. 14. Normalized estimation error squared (NEES) over 10,000

Monte Carlo runs, with y2 = 8,000 and a target with 1 m/s
2

acceleration.

Fig. 15. Normalized estimation error squared (NEES) over 10,000

Monte Carlo runs, with y2 = 8,000 and a target with 2 m/s
2

acceleration.

involving interpolating successive LOS measurements

was presented. The resulting composite measurements

were then compared to the ML method. Both methods

provide a way to initialize tracks, and the difference in

their accuracies were found to be statistically insignif-

icant. Furthermore, both methods generally provide a

statistically consistent error covariance. The interpola-

tion method proved to provide a more consistent error

covariance in the marginally observable case of a target

trajectory which is coplanar with the line connecting

the two sensors. The consistency of the error covariance

could also break down for large target accelerations (in

comparison to the cross-range error of the sensors). In

such cases, the acceleration would need to be estimated

as well, at the expense of requiring more measurements

from the sensors.
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